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Supplementary Materials 

S1. Data Augmentation Methods 

In this section we outline the methods used to fit each transmission models to the 

observed household transmission data. When describing the fitting procedure, we adapt 

the notation of Cauchemez and Ferguson [1]. For clarity, we first define the likelihood as 

though the times of all events, i.e. infection times and onset times for both symptomatic 

and asymptomatic cases are known. We then outline a Markov-Chain Monte Carlo 

(MCMC) algorithm used to systematically explore the space of unobserved infection 

times (and onset times for asymptomatic infections) necessary to calculate the likelihood. 

Augmented Data Likelihood 

Individuals within a household are indexed by i; for each individual ! = 1…!, 

we define !!! = 1 if the individual is a non-index case with a symptomatic infection 

between time 0, the time of exposure of the household index case, and T, the end of the 

observation period. We define !!! = 1 if the individual had an asymptomatic infection on 

the interval [0, T]. We denote the time of infection for each non-index, symptomatic case 

as !!! and denote this time as !!! for each asymptomatic case. For economy of notation, we 

will refer to asymptomatic and symptomatic infection times together as !!∗.  

By convention, individuals who are not infected during the observation period are 

assigned !!∗ = ! + 1, where T is the duration of the observation period.  Finally, 

!(!; !!!, !!) is the density of the incubation period duration, a Gamma distribution 

parameterized in terms of its mean duration in days (!!!) and shape parameter (!!).  

We can now calculate the contribution that symptomatic and asymptomatic cases, 

as well as non-cases, make to the likelihood.  
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First, for symptomatic cases: 

 

And then for asymptomatic cases: 

 

 

Finally, we account for the contribution of non-cases to the likelihood: 

 

The product of the contributions of all cases and non-cases in a household h is the 

augmented data likelihood, ! !! ,!! !), for that household: 

 

Because we assume that the transmission process in each household following exposure 

at the point source is independent, we can then calculate the sampling probability for the 

entire dataset as ! !,!! !) = ! !! ,!! !)!!
!!! . 
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S2. Markov-Chain Monte Carlo (MCMC) Sampling Algorithm 

 In this section, we outline the MCMC algorithm used to sample the joint posterior 

distribution of event times and transmission parameters. 

A. Adjusting Infection Times 

Because our household transmission data are reported in terms of incidence, exact 

infection times for non-index cases are unobserved. To sample these missing data, we use 

a Gibbs sampling [2] step in which a case’s infection time is sampled directly from the 

joint distribution of susceptible period durations and incubation period durations, 

conditional on the time of illness onset.  

To do this, we first calculate the probability of 1) infection on each day prior to 

the onset of symptoms, !! (where !! ∈ !!, the set of all other symptom onset times in the 

household), and 2) the probability of an incubation period duration equal to !! − !: 

 

We then normalize this distribution of potential infection times by conditioning on the 

total probability that the infection time occurred on the interval [0, !!-1], i.e. that it 

occurred before the onset of symptoms: 
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And the new infection time of the case is then sampled from !!. For more detail on this 

step, see Appendix A of [1].   

 

B. Adjusting Recovery Times 

To sample the unobserved recovery times in Model 1, we use a Metropolis-

Hastings step in which a new recovery time, !!!!is proposed from the hypothesized 

distribution of the infectious period duration, !(!; !1/!! , !!!), where !! is the rate 

parameter for the recovery period distribution on the current step, t, of the sampling 

algorithm and !!! is its shape parameter. Because new times are sampled independently of 

each other, the proposal ratio, !, for this move reduces to: 

! =
! !!!; !!! , !!

!

! !!!;
!
!! , !!

!
. 

 

C. Reversible-Jump MCMC Moves for Asymptomatic Infections 

To explore the role of asymptomatic infections in these household outbreaks, we 

use a pair of reversible-jump MCMC moves to insert and remove asymptomatic 

infections from a household outbreak. Because these infections are completely 

unobserved, we need to sample both the infection and onset times for such infections. We 

assume that the incubation periods for asymptomatic infections follow the same 

distribution as symptomatic ones. We also use a Metropolis-Hastings (MH) move, similar 

to the one in S2, section B above, to adjust infection and onset times for asymptomatic 

infections. As with the symptomatic cases, the sampling probability of the latent period 

for asymptomatic cases is included in the augmented data likelihood.  
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Here we outline the calculation of proposal probabilities for reversible jump 

MCMC moves for adding and removing asymptomatic infections: 

Move 1: Add Asymptomatic Infection. When adding an asymptomatic infection, 

we first sample a susceptible individual at random from the set of susceptible individuals 

across all household, S, with probability!!!!!, where !! is the size of the susceptible 

population. We then sample a time of infection from the joint distribution of susceptible 

period lengths and infection times. To do this, we first calculate the sampling probability 

of each susceptible period/infection time combination, ! !!! = ! !! ,!! , which is 

calculated as follows: 

 

And then sample the infection time from the normalized distribution: 

 

 

  Finally, we sample the duration of the latent period from its density, ! !!,!! ,  as 

in S2.B, above. The proposal probability of this step is then !!!!×!!! !!! ×! !!,!! . 

 

Move 2: Remove Asymptomatic Infection. When removing an asymptomatic 

infection, we sample an individual at random from the population of individuals who 
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have an asymptomatic infection, A, and remove the infection. Consequently, the proposal 

probability for this step is !!!!. 

 Using the derivation of the proposal probabilities for Steps 1 and 2, we can easily 

calculate the proposal ratio, !, for each step. For Move 1: 

! = 1/(!! + 1)!
!!!!!×!!! !!! ×! !!,!!

 

For Move 2: 

! = 1/(!! + 1)×!!! !! ×! !!,!)
!!!!

 

 

Move 3: Adjust Asymptomatic Infection and Onset Times. In this step, we 

sample a new infection and onset time for the asymptomatic case, in the same way as 

when we add a new infection in Move 1. This results in a proposal ratio 

! = !!!! !!! ×! !!,!! !!! !! ×! !!,! . 

 

S3. Model Comparison with Bayes Factors.  
 

To compute Bayes factors for the comparison of Models 2 & 3, we employed an 

MCMC sampling step to switch between models of time-varying infectiousness. For 

example, if we want to switch from Model 2 to Model 3, we set the parameters !!, !!!of 

Model 2 to zero with probability = 1. We then propose new values for the parameters of 

Model 3 !!, !!, from the proposal distributions ! !!  and !(!!). So, the proposal ratio 

for a move from Model 2 to Model 3 is: 

!!→! =
! !! !(!!)
! !! !(!!)
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We can then compute the acceptance probability as discussed above. The index of the 

accepted model is then recorded, and Bayes factors comparing Models 2 & 3 are 

calculated using the ratios of the marginal posterior densities for each model. 

 

S4. Supplementary Results 

Asymptomatic Infections 

 Table S1 shows estimated parameter values for Model 2 for asymptomatic 

prevalence increasing from 10% to 40%. Table S2 shows estimated parameters for Model 

3 for asymptomatic prevalence ranging from 10% to 40%. In both cases, the estimate of 

the overall transmission rate scales linearly with asymptomatic prevalence, suggesting at 

most a weak effect of asymptomatic cases on household transmission dynamics. These 

results are similar to findings from [3]. The value for the infectivity of the point-source 

event, !!" appears to be very sensitive to the inclusion of asymptomatic infections. This 

is likely because these infections are not anchored to an observed onset time, allowing the 

model to place them at the time the individual dined at the point-source.  

 Simulated Data 
 
 To verify that the fitting procedures used for models both with and without 

asymptomatic infectious are accurate, we simulated outbreaks using fitted parameter 

values for Models 2 & 3 from Tables 2, 3 & 4 in the main text, and re-fit the model to 

these simulated data. We then repeated this procedure for each level of asymptomatic 

prevalence from 0-40%. When simulating outbreaks, we retain the size of each household 

in the analysis, as well as whether each individual dined at the point source. For a full 

simulated data analysis of Model 1, see [3]. 
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As in the main text, we constrain the search for the mean day of infection when 

estimating Models 2 & 3. Simulated data results for Model 2 are presented in Table S3, 

and results for Model 3 are presented in Table S4. For all except one parameter across all 

levels of asymptomatic prevalence, parameter values used in simulations are included in 

the estimated 95% credible intervals and, in most cases, are very near to the estimated 

value. A notable exception is the value of !, the overall transmission rate, for the 30% 

asymptomatic prevalence level in Model 3. In this case, the estimated value was much 

larger than the simulated one. This highlights the fact that Monte Carlo error may 

influence our results, although re-estimation with other simulated datasets (not shown) 

obtained more accurate results.
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Table S1.  Transmission parameter estimates for increasing asymptomatic prevalence for Model 2. 

 

 

 

 

 

 

 

Table S2.  Transmission parameter estimates for increasing asymptomatic prevalence for Model 3.

Asymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic Prevalence
10%10% 20%20% 30%30% 40%40%

Est 95% CI Est 95% CI Est 95% CI Est 95% CI

Point-source events
    Probability of infection at point-source 0.94 (0.60, 0.99) 0.98 (0.90, 0.99) 0.98 (0.90, 0.99) 0.97 (0.92, 0.99)

Symptomatic Transmission
    Phi (total infection) 0.17 (0.10, 0.28) 0.21 (0.11, 0.33) 0.24 (0.13, 0.39) 0.30 (0.16, 0.50)
    Eta (mean of infectivity profile) 3.87 (2.26, 4.95) 3.87 (2.25, 4.95) 3.88 (2.25, 4.95) 3.89 (2.27, 4.95)

Asymptomatic Transmission
    Phi_A (total infection) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.04) 0.03 (0.02, 0.05)

Asymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic Prevalence
10%10% 20%20% 30%30% 40%40%

Est 95% CI Est 95% CI Est 95% CI Est 95% CI

Point-source events
    Probability of infection at point-source 0.96 (0.66, 0.99) 0.98 (0.90, 0.99) 0.98 (0.13, 0.38) 0.98 (0.92, 0.99)

Symptomatic Transmission
    Phi (total infection) 0.17 (0.09, 0.27) 0.19 (0.11, 0.32) 0.23 (0.13, 0.38) 0.28 (0.15, 0.48)
    Eta (mean of infectivity profile) 3.10 (1.67, 4.81) 3.12 (1.71, 4.82) 3.12 (1.70, 4.81) 3.13 (1.72, 4.82)

Asymptomatic Transmission
    Phi_A (total infection) 0.02 (0.01, 0.03) 0.02 (0.02, 0.03) 0.02 (0.01, 0.04) 0.03 (0.01, 0.05)



! 10!

!
!

!
!

!
Table S3. Parameter values and estimates for simulated data analysis of Model 2 

 
 
 

 
Table S4. Parameter values and estimates for simulated data analysis of Model 3  

Asymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic Prevalence
0%0% 10%10%10% 20%20%20% 30%30%30% 40%40%40%

Actual Est 95% CI Actual Est 95% CI Actual Est 95% CI Actual Est 95% CI Actual Est 95% CI

Point-source events
    Probability of infection at point-source 0.50 0.45 (0.29, 0.62) 0.95 0.99 (0.99, 1.0) 0.95 0.99 (0.99, 1.0) 0.95 0.99 (0.99, 1.00) 0.95 0.99 (0.99, 1.0)

Symptomatic Transmission
    Phi (total infection) 0.14 0.16 (0.10, 0.24) 0.17 0.14 (0.08, 0.23) 0.22 0.18 (0.10, 0.29) 0.27 0.21 (0.11, 0.34) 0.34 0.31 (0.18, 0.49)
    Eta (mean of infectivity profile) 2.50 3.10 (1.78, 4.75) 2.50 3.20 (1.75, 4.83) 2.50 2.74 (1.47, 4.62) 2.50 2.03 (1.07, 3.89) 2.50 2.87 (1.62, 4.64)

Asymptomatic Transmission
    Phi_A (total infection) 0.007 0.02 (0.01, 0.02) 0.0085 0.01 (0.008, 0.02) 0.011 0.02 (0.01, 0.03) 0.0014 0.017 (0.01, 0.03) 0.017 0.03 (0.01, 0.05)

Asymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic PrevalenceAsymptomatic Prevalence
0%0% 10%10%10% 20%20%20% 30%30%30% 40%40%40%

Actual Est 95% CI Actual Est 95% CI Actual Est 95% CI Actual Est 95% CI Actual Est 95% CI

Point-source events
    Probability of infection at point-source 0.50 0.41 (0.26, 0.56) 0.95 0.99 (0.99, 1.0) 0.95 0.99 (0.98, 1.0) 0.95 0.95 (0.82, 1.0) 0.95 0.99 (0.99, 1.0)

Symptomatic Transmission
    Phi (total infection) 0.14 0.13 (0.07, 0.21) 0.17 0.19 (0.11, 0.29) 0.22 0.25 (0.15, 0.39) 0.27 0.56 (0.35, 0.85) 0.34 0.37 (0.21, 0.62)
    Eta (mean of infectivity profile) 2.50 2.30 (0.80, 4.67) 2.50 2.23 (0.90, 4.59) 2.50 2.20 (0.98, 4.43) 2.50 2.05 (0.94, 4.27) 2.50 1.81 (0.67, 4.3)

Asymptomatic Transmission
    Phi_A (total infection) 0.01 0.01 (0.007, 0.02) 0.0085 0.02 (0.01, 0.03) 0.02 0.03 (0.02, 0.04) 0.03 0.05 (0.03, 0.08) 0.03 0.04 (0.02, 0.06)
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